代码编织梦想

在上一篇文章里,我们在技能蓝图里实现了通过技能实现技能指示,再次触发按键后,将通过定时器触发技能效果表现,最多支持11个奥术个体效果的播放。
在这一篇里,我们将实现技能播放时,对目标敌人应用技能伤害。

首先,我们将在GE里增加一些额外的参数,并且会设置序列化,可以同步到服务器,并在伤害技能类里创建配置项时增加对应参数,通过函数库应用时,将参数设置到GE实例,并在计算伤害的代码里,获取参数,并计算最终伤害。

添加范围伤害属性

首先,我们需要添加范围伤害相关的属性,需要在以下几个地方添加,由于之前制作技能时,也添加过,这里就不细说了,只列出对应的相关属性。
在RPGAbilityTypes.h中,伤害技能生成的配置项里,添加对应的参数

	//当前伤害类型是否为范围伤害
	UPROPERTY(BlueprintReadWrite)
	bool bIsRadialDamage = false;

	//内半径:在此半径内的所有目标都将受到完整的伤害
	UPROPERTY(BlueprintReadWrite)
	float RadialDamageInnerRadius = 0.f;

	//外半径:超过这个距离的目标受到最小伤害,最小伤害如果设置为0,则圈外不受到伤害
	UPROPERTY(BlueprintReadWrite)
	float RadialDamageOuterRadius = 0.f;

	//伤害源的中心点
	UPROPERTY(BlueprintReadWrite)
	FVector RadialDamageOrigin = FVector::ZeroVector;

在GE的实例上面设置对应的属性
在这里插入图片描述
添加对应的get和set函数
在这里插入图片描述
在这里插入图片描述
对其进行序列化,可以和服务器同步数据
在这里插入图片描述
在这里插入图片描述
在函数库里,增加对GE设置属性和获取,我们可以通过函数库的函数,传入GE实例对象进行获取和设置

	/**
	 * 获取当前GE是否为范围伤害GE
	 *
	 * @param EffectContextHandle 当前GE的上下文句柄
	 *
	 * @return 如果是范围伤害 返回true
	 *
	 * @note 此属性是RPGAbilityTypes.h内自定义属性,可实现复制。
	 */
	UFUNCTION(BlueprintPure, Category="RPGAbilitySystemLibrary|GameplayEffects")
	static bool IsRadialDamage(const FGameplayEffectContextHandle& EffectContextHandle);

	/**
	 * 获取当前GE 范围伤害内半径
	 *
	 * @param EffectContextHandle 当前GE的上下文句柄
	 *
	 * @return 返回负面效果触发间隔
	 *
	 * @note 此属性是RPGAbilityTypes.h内自定义属性,可实现复制。
	 */
	UFUNCTION(BlueprintPure, Category="RPGAbilitySystemLibrary|GameplayEffects")
	static float GetRadialDamageInnerRadius(const FGameplayEffectContextHandle& EffectContextHandle);

	/**
	 * 获取当前GE 范围伤害外半径
	 *
	 * @param EffectContextHandle 当前GE的上下文句柄
	 *
	 * @return 返回负面效果触发间隔
	 *
	 * @note 此属性是RPGAbilityTypes.h内自定义属性,可实现复制。
	 */
	UFUNCTION(BlueprintPure, Category="RPGAbilitySystemLibrary|GameplayEffects")
	static float GetRadialDamageOuterRadius(const FGameplayEffectContextHandle& EffectContextHandle);

	/**
	 * 获取当前GE 伤害中心点
	 *
	 * @param EffectContextHandle 当前GE的上下文句柄
	 *
	 * @return 攻击的击退会根据概率计算,如果有值,则为应用成功
	 *
	 * @note 此属性是RPGAbilityTypes.h内自定义属性,可实现复制。
	 */
	UFUNCTION(BlueprintPure, Category="RPGAbilitySystemLibrary|GameplayEffects")
	static FVector GetRadialDamageOrigin(const FGameplayEffectContextHandle& EffectContextHandle);
	/**
	 * 设置GE是否为范围伤害
	 *
	 * @param EffectContextHandle 当前GE的上下文句柄
	 * @param bInIsRadialDamage true为设置为范围伤害
	 *
	 * @note 此属性是RPGAbilityTypes.h内自定义属性,可实现复制。
	 */
	UFUNCTION(BlueprintCallable, Category="RPGAbilitySystemLibrary|GameplayEffects")
	static void SetIsRadialDamage(UPARAM(ref) FGameplayEffectContextHandle& EffectContextHandle, bool bInIsRadialDamage);

	/**
	 * 设置GE 范围伤害 内半径距离
	 *
	 * @param EffectContextHandle 当前GE的上下文句柄
	 * @param InRadialDamageInnerRadius 内半径距离 内半径内受到完整伤害
	 *
	 * @note 此属性是RPGAbilityTypes.h内自定义属性,可实现复制。
	 */
	UFUNCTION(BlueprintCallable, Category="RPGAbilitySystemLibrary|GameplayEffects")
	static void SetRadialDamageInnerRadius(UPARAM(ref) FGameplayEffectContextHandle& EffectContextHandle, float InRadialDamageInnerRadius);

	/**
	 * 设置GE 范围伤害 外半径距离
	 *
	 * @param EffectContextHandle 当前GE的上下文句柄
	 * @param InRadialDamageOuterRadius 外半径距离,超出此距离外的敌人将无法受到伤害
	 *
	 * @note 此属性是RPGAbilityTypes.h内自定义属性,可实现复制。
	 */
	UFUNCTION(BlueprintCallable, Category="RPGAbilitySystemLibrary|GameplayEffects")
	static void SetRadialDamageOuterRadius(UPARAM(ref) FGameplayEffectContextHandle& EffectContextHandle, float InRadialDamageOuterRadius);
	
	/**
	 * 设置GE伤害源的中心点
	 *
	 * @param EffectContextHandle 当前GE的上下文句柄
	 * @param InRadialDamageOrigin 伤害源的中心点
	 *
	 * @note 此属性是RPGAbilityTypes.h内自定义属性,可实现复制。
	 */
	UFUNCTION(BlueprintCallable, Category="RPGAbilitySystemLibrary|GameplayEffects")
	static void SetRadialDamageOrigin(UPARAM(ref) FGameplayEffectContextHandle& EffectContextHandle, const FVector& InRadialDamageOrigin);

接着在CPP文件里实现

bool URPGAbilitySystemLibrary::IsRadialDamage(const FGameplayEffectContextHandle& EffectContextHandle)
{
	if(const FRPGGameplayEffectContext* RPGEffectContext = static_cast<const FRPGGameplayEffectContext*>(EffectContextHandle.Get()))
	{
		return RPGEffectContext->IsRadialDamage();
	}
	return false;
}

float URPGAbilitySystemLibrary::GetRadialDamageInnerRadius(const FGameplayEffectContextHandle& EffectContextHandle)
{
	if(const FRPGGameplayEffectContext* RPGEffectContext = static_cast<const FRPGGameplayEffectContext*>(EffectContextHandle.Get()))
	{
		return RPGEffectContext->GetRadialDamageInnerRadius();
	}
	return 0.f;
}

float URPGAbilitySystemLibrary::GetRadialDamageOuterRadius(const FGameplayEffectContextHandle& EffectContextHandle)
{
	if(const FRPGGameplayEffectContext* RPGEffectContext = static_cast<const FRPGGameplayEffectContext*>(EffectContextHandle.Get()))
	{
		return RPGEffectContext->GetRadialDamageOuterRadius();
	}
	return 0.f;
}

FVector URPGAbilitySystemLibrary::GetRadialDamageOrigin(const FGameplayEffectContextHandle& EffectContextHandle)
{
	if(const FRPGGameplayEffectContext* RPGEffectContext = static_cast<const FRPGGameplayEffectContext*>(EffectContextHandle.Get()))
	{
		return RPGEffectContext->GetRadialDamageOrigin();
	}
	return FVector::ZeroVector;
}
void URPGAbilitySystemLibrary::SetIsRadialDamage(FGameplayEffectContextHandle& EffectContextHandle, bool bInIsRadialDamage)
{
	FRPGGameplayEffectContext* RPGEffectContext = static_cast<FRPGGameplayEffectContext*>(EffectContextHandle.Get());
	RPGEffectContext->SetIsRadialDamage(bInIsRadialDamage);
}

void URPGAbilitySystemLibrary::SetRadialDamageInnerRadius(FGameplayEffectContextHandle& EffectContextHandle, float InRadialDamageInnerRadius)
{
	FRPGGameplayEffectContext* RPGEffectContext = static_cast<FRPGGameplayEffectContext*>(EffectContextHandle.Get());
	RPGEffectContext->SetRadialDamageInnerRadius(InRadialDamageInnerRadius);
}

void URPGAbilitySystemLibrary::SetRadialDamageOuterRadius(FGameplayEffectContextHandle& EffectContextHandle, float InRadialDamageOuterRadius)
{
	FRPGGameplayEffectContext* RPGEffectContext = static_cast<FRPGGameplayEffectContext*>(EffectContextHandle.Get());
	RPGEffectContext->SetRadialDamageOuterRadius(InRadialDamageOuterRadius);
}

void URPGAbilitySystemLibrary::SetRadialDamageOrigin(FGameplayEffectContextHandle& EffectContextHandle, const FVector& InRadialDamageOrigin)
{
	FRPGGameplayEffectContext* RPGEffectContext = static_cast<FRPGGameplayEffectContext*>(EffectContextHandle.Get());
	RPGEffectContext->SetRadialDamageOrigin(InRadialDamageOrigin);
}

接着,我们在GE伤害类RPGDamageGameplayAbility.h,用于设置技能的相关配置

	//当前伤害类型是否为范围伤害
	UPROPERTY(EditDefaultsOnly, BlueprintReadOnly, Category="Damage")
	bool bIsRadialDamage = false;

	//内半径:在此半径内的所有目标都将受到完整的伤害
	UPROPERTY(EditDefaultsOnly, BlueprintReadOnly, Category="Damage")
	float RadialDamageInnerRadius = 0.f;

	//外半径:超过这个距离的目标受到最小伤害,最小伤害如果设置为0,则圈外不受到伤害
	UPROPERTY(EditDefaultsOnly, BlueprintReadOnly, Category="Damage")
	float RadialDamageOuterRadius = 0.f;

	//伤害源的中心点
	UPROPERTY(EditDefaultsOnly, BlueprintReadOnly, Category="Damage")
	FVector RadialDamageOrigin = FVector::ZeroVector;

然后在函数创建配置项时,添加将配置数值应用给生成的配置项上。

FDamageEffectParams URPGDamageGameplayAbility::MakeDamageEffectParamsFromClassDefaults(AActor* TargetActor)
{
	FDamageEffectParams Params;
	Params.WorldContextObject = GetAvatarActorFromActorInfo();
	Params.DamageGameplayEffectClass = DamageEffectClass;
	Params.SourceAbilitySystemComponent = GetAbilitySystemComponentFromActorInfo();
	Params.TargetAbilitySystemComponent = UAbilitySystemBlueprintLibrary::GetAbilitySystemComponent(TargetActor);
	for(auto& Pair : DamageTypes)
	{
		const float ScaledDamage = Pair.Value.GetValueAtLevel(GetAbilityLevel()); //根据等级获取技能伤害
		Params.DamageTypes.Add(Pair.Key, ScaledDamage);
	}
	Params.AbilityLevel = GetAbilityLevel();
	Params.DeBuffDamageType = DeBuffDamageType;
	Params.DeBuffChance = DeBuffChance;
	Params.DeBuffDamage = DeBuffDamage;
	Params.DeBuffDuration = DeBuffDuration;
	Params.DeBuffFrequency = DeBuffFrequency;
	Params.DeathImpulseMagnitude = DeathImpulseMagnitude;
	Params.KnockbackForceMagnitude = KnockbackForceMagnitude;
	Params.KnockbackChance = KnockbackChance;
	//如果是范围伤害,将设置对应属性
	if(bIsRadialDamage)
	{
		Params.bIsRadialDamage = bIsRadialDamage;
		Params.RadialDamageOrigin = RadialDamageOrigin;
		Params.RadialDamageInnerRadius = RadialDamageInnerRadius;
		Params.RadialDamageOuterRadius = RadialDamageOuterRadius;
	}
	return Params;
}

最后,就通过配置项,将配置项设置到GE实例上,这个我们是在函数库的函数实现的,我们增加对范围伤害属性的支持

FGameplayEffectContextHandle URPGAbilitySystemLibrary::ApplyDamageEffect(const FDamageEffectParams& DamageEffectParams)
{
	const FRPGGameplayTags& GameplayTags = FRPGGameplayTags::Get();
	const AActor* SourceAvatarActor = DamageEffectParams.SourceAbilitySystemComponent->GetAvatarActor();

	//创建GE的上下文句柄
	FGameplayEffectContextHandle EffectContextHandle = DamageEffectParams.SourceAbilitySystemComponent->MakeEffectContext();
	EffectContextHandle.AddSourceObject(SourceAvatarActor);

	//设置击退相关
	SetDeathImpulse(EffectContextHandle, DamageEffectParams.DeathImpulse);
	SetKnockbackForce(EffectContextHandle, DamageEffectParams.KnockbackForce);

	//设置范围伤害相关配置
	SetIsRadialDamage(EffectContextHandle, DamageEffectParams.bIsRadialDamage);
	SetRadialDamageInnerRadius(EffectContextHandle, DamageEffectParams.RadialDamageInnerRadius);
	SetRadialDamageOuterRadius(EffectContextHandle, DamageEffectParams.RadialDamageOuterRadius);
	SetRadialDamageOrigin(EffectContextHandle, DamageEffectParams.RadialDamageOrigin);

	//根据句柄和类创建GE实例
	const FGameplayEffectSpecHandle SpecHandle = DamageEffectParams.SourceAbilitySystemComponent->MakeOutgoingSpec(DamageEffectParams.DamageGameplayEffectClass, DamageEffectParams.AbilityLevel, EffectContextHandle);

	//通过标签设置GE使用的配置
	for(auto& Pair : DamageEffectParams.DamageTypes)
	{
		UAbilitySystemBlueprintLibrary::AssignTagSetByCallerMagnitude(SpecHandle, Pair.Key, Pair.Value);
	}
	UAbilitySystemBlueprintLibrary::AssignTagSetByCallerMagnitude(SpecHandle, GameplayTags.DeBuff_Chance, DamageEffectParams.DeBuffChance);
	UAbilitySystemBlueprintLibrary::AssignTagSetByCallerMagnitude(SpecHandle, DamageEffectParams.DeBuffDamageType, DamageEffectParams.DeBuffDamage);
	UAbilitySystemBlueprintLibrary::AssignTagSetByCallerMagnitude(SpecHandle, GameplayTags.DeBuff_Duration, DamageEffectParams.DeBuffDuration);
	UAbilitySystemBlueprintLibrary::AssignTagSetByCallerMagnitude(SpecHandle, GameplayTags.DeBuff_Frequency, DamageEffectParams.DeBuffFrequency);

	//将GE应用给目标ASC
	DamageEffectParams.TargetAbilitySystemComponent->ApplyGameplayEffectSpecToSelf(*SpecHandle.Data.Get());
	return EffectContextHandle;
}

到这里,我们实现了在技能蓝图可以配置相关属性,然后生成到配置项里,然后通过函数库将其应用到GE实例上,GE实例会将其序列化,并同步到所有的客户段和服务器上。

实现伤害的应用

相关参数有了,我们还需要实现修改伤害,将范围伤害的功能应用上去。
实现范围伤害的计算,UE的内置里实现了对应的一套,我们可以通过调用内置的函数UGameplayStatics::ApplyRadialDamageWithFalloff去实现对应的伤害计算
在这里插入图片描述
函数计算完成后,会调用TakeDamage,去实现应用到角色身上,我们可以通过增加一个委托,然后覆写TakeDamage,实现委托的广播。
在这里插入图片描述
我们在战斗接口增加一个新的委托类型,用于广播受到的伤害

DECLARE_MULTICAST_DELEGATE_OneParam(FOnDamageSignature, float /*范围伤害造成的最终数值*/); //返回范围伤害能够对自身造成的伤害,在TakeDamage里广播

并增加一个获取伤害委托的函数

	/**
	 * 获取角色受到伤害触发的委托,由于委托是创建在角色基类里的,这里可以通过添加struct来实现前向声明,不需要在头部声明一遍。
	 * @return 委托
	 */
	virtual FOnDamageSignature& GetOnDamageDelegate() = 0; 

在角色基类里创建一个对应类型的变量

FOnDamageSignature OnDamageDelegate; //传入伤害后得到结果后的委托

覆写获取委托函数

virtual FOnDamageSignature& GetOnDamageDelegate() override;

在cpp里实现函数

FOnDamageSignature& ARPGCharacterBase::GetOnDamageDelegate()
{
	return OnDamageDelegate;
}

我们接着覆写范围伤害调用的TakeDamage函数

	/**
	 * 覆写 应用伤害给自身
	 * @see https://www.unrealengine.com/blog/damage-in-ue4
	 * @param DamageAmount		要施加的伤害数值
	 * @param DamageEvent		描述伤害细节的结构体,支持不同类型的伤害,如普通伤害、点伤害(FPointDamageEvent)、范围伤害(FRadialDamageEvent)等。
	 * @param EventInstigator	负责造成伤害的 Controller,通常是玩家或 AI 的控制器。
	 * @param DamageCauser		直接造成伤害的 Actor,例如爆炸物、子弹或掉落的石头。
	 * @return					返回实际应用的伤害值。这允许目标修改或减少伤害,然后将最终的值返回。
	 */
	virtual float TakeDamage(float DamageAmount, FDamageEvent const& DamageEvent, AController* EventInstigator, AActor* DamageCauser) override;

在从父函数获取的值通过委托返回

float ARPGCharacterBase::TakeDamage(float DamageAmount, FDamageEvent const& DamageEvent, AController* EventInstigator, AActor* DamageCauser)
{
	const float DamageTaken = Super::TakeDamage(DamageAmount, DamageEvent, EventInstigator, DamageCauser);
	OnDamageDelegate.Broadcast(DamageTaken);
	return DamageTaken;
}

接下来,我们在计算最终应用伤害的ExecCalc_Damage.cpp里,这个是自定义计算伤害的GE类,可以自己定义获取属性,和设置影响目标的属性值。
我们在里面首先绑定委托,在匿名函数里修改造成的伤害,然后通过调用内置函数计算范围伤害造成的最终伤害,如果超出外圈范围,将不受到伤害,所以,第二个伤害只我们传入了0,

		if(URPGAbilitySystemLibrary::IsRadialDamage(EffectContextHandle))
		{
			// 1. 覆写 TakeDamage 函数,通过函数获取范围技能能够造成的最终伤害
			// 2. 创建一个委托 OnDamageDelegate, 在TakeDamage里向外广播最终伤害数值
			// 3. 在战斗接口声明一个函数用于返回委托,并在角色基类实现,在计算伤害时通过战斗接口获取到委托,并绑定匿名函数
			// 4. 调用 UGameplayStatics::ApplyRadialDamageWithFalloff 函数应用伤害,函数内会调用角色身上的TakeDamage来广播委托。
			// 5. 在匿名函数中,修改实际造成的伤害。
			
			if(ICombatInterface* CombatInterface = Cast<ICombatInterface>(TargetAvatar))
			{
				CombatInterface->GetOnDamageDelegate().AddLambda([&](float DamageAmount)
				{
					DamageTypeValue = DamageAmount;
				});
			}

			UGameplayStatics::ApplyRadialDamageWithFalloff(
				TargetAvatar,
				DamageTypeValue,
				0.f,
				URPGAbilitySystemLibrary::GetRadialDamageOrigin(EffectContextHandle),
				URPGAbilitySystemLibrary::GetRadialDamageInnerRadius(EffectContextHandle),
				URPGAbilitySystemLibrary::GetRadialDamageOuterRadius(EffectContextHandle),
				1.f,
				UDamageType::StaticClass(),
				TArray<AActor*>(),
				SourceAvatar,
				nullptr);
		}

到这里,我们实现范围伤害的应用,在计算伤害这里有点逻辑复杂,现绑定委托,然后调用函数触发委托,修改伤害值,这种相当于绕了一圈又回来了。
我比较推荐直来直去的逻辑,可以减少后期维护成本,希望有能力的同学可以实现对应的函数,直接返回值即可,没必要通过委托绕一圈。

在蓝图实现伤害的应用

我们在伤害数据资产里增加奥术爆发的伤害设置
在这里插入图片描述
然后应用给技能
在这里插入图片描述
这里,我们将不使用应用负面效果,但技能带有击飞效果,并将范围相关配置设置
在这里插入图片描述
设置完成,我们设置调试节点,来查看每次调用是否能够正确的显示内圈和外圈。
在这里插入图片描述
然后运行查看打印效果。
在这里插入图片描述
接着我们处理在应用伤害时的中心位置,在创建配置时,我们增加一个新的参数,用于可以设置目标位置

	//创建技能负面效果使用的结构体
	UFUNCTION(BlueprintPure)
	FDamageEffectParams MakeDamageEffectParamsFromClassDefaults(AActor* TargetActor = nullptr, FVector InRadialDamageOrigin = FVector::ZeroVector);

接着修改实现,我们将击退的相关数据也移动到了此函数内,用于计算技能的击退和正确的中心。

FDamageEffectParams URPGDamageGameplayAbility::MakeDamageEffectParamsFromClassDefaults(AActor* TargetActor, FVector InRadialDamageOrigin)
{
	FDamageEffectParams Params;
	Params.WorldContextObject = GetAvatarActorFromActorInfo();
	Params.DamageGameplayEffectClass = DamageEffectClass;
	Params.SourceAbilitySystemComponent = GetAbilitySystemComponentFromActorInfo();
	Params.TargetAbilitySystemComponent = UAbilitySystemBlueprintLibrary::GetAbilitySystemComponent(TargetActor);
	for(auto& Pair : DamageTypes)
	{
		const float ScaledDamage = Pair.Value.GetValueAtLevel(GetAbilityLevel()); //根据等级获取技能伤害
		Params.DamageTypes.Add(Pair.Key, ScaledDamage);
	}
	Params.AbilityLevel = GetAbilityLevel();
	
	//负面效果相关
	Params.DeBuffDamageType = DeBuffDamageType;
	Params.DeBuffChance = DeBuffChance;
	Params.DeBuffDamage = DeBuffDamage;
	Params.DeBuffDuration = DeBuffDuration;
	Params.DeBuffFrequency = DeBuffFrequency;
	Params.DeathImpulseMagnitude = DeathImpulseMagnitude;
	
	//击退相关
	Params.KnockbackForceMagnitude = KnockbackForceMagnitude;
	Params.KnockbackChance = KnockbackChance;
	if(IsValid(TargetActor))
	{
		//获取到攻击对象和目标的朝向,并转换成角度
		FRotator Rotation;
		//如果设置了伤害中心,则使用中心的设置,否则采用攻击造成的
		if(InRadialDamageOrigin.IsZero())
		{
			Rotation = (TargetActor->GetActorLocation() - GetAvatarActorFromActorInfo()->GetActorLocation()).Rotation();
			Rotation.Pitch = 45.f; //设置击退角度垂直45度
		}
		else
		{
			Rotation = (TargetActor->GetActorLocation() - InRadialDamageOrigin).Rotation();
			Rotation.Pitch = 90.f; //设置为击飞效果
		}
		const FVector ToTarget = Rotation.Vector();
		Params.DeathImpulse = ToTarget * DeathImpulseMagnitude;
		//判断攻击是否触发击退
		if(FMath::RandRange(1, 100) < Params.KnockbackChance)
		{
			Params.KnockbackForce = ToTarget * KnockbackForceMagnitude;
		}
	}
	
	//如果是范围伤害,将设置对应属性
	if(bIsRadialDamage)
	{
		Params.bIsRadialDamage = bIsRadialDamage;
		Params.RadialDamageOrigin = InRadialDamageOrigin.IsZero() ? RadialDamageOrigin : InRadialDamageOrigin;
		Params.RadialDamageInnerRadius = RadialDamageInnerRadius;
		Params.RadialDamageOuterRadius = RadialDamageOuterRadius;
	}
	return Params;
}

编译代码,我们在技能蓝图里,将获取到所有技能可命中的角色,然后将结果保存为变量,防止for循环多次调用前面的函数。
在这里插入图片描述
接着for循环遍历所有的目标,创建伤害配置,并应用给目标。
在这里插入图片描述
运行查看效果
在这里插入图片描述

修改计算伤害方式

之前,我们通过委托回调的方式修改,那种方式有些反人类,这里,我们可以将所需的计算封装为一个函数,并直接返回计算后的伤害。
这里,我在函数库里增加了一个新的函数,专门用于计算范围伤害,并且保留了距离减伤和障碍物阻挡功能。

	/** 此函数为计算范围性伤害,可以根据距离和障碍物进行精准控制最终造成的伤害
	 * @param TargetActor - 需要计算攻击的目标
	 * @param BaseDamage - 在伤害内半径(DamageInnerRadius)内应用的最大伤害值。
	 * @param MinimumDamage - 在伤害外半径(DamageOuterRadius)处应用的最小伤害值。如果为0将不受伤害
	 * @param Origin - 爆炸的原点(中心位置),即伤害的起点。
	 * @param DamageInnerRadius - 全伤害半径:在该范围内的所有对象会受到最大伤害(BaseDamage)。
	 * @param DamageOuterRadius - 最小伤害半径:在该范围之外的对象只会受到**MinimumDamage**。
	 * @param DamageFalloff - 控制伤害递减的速率。值越高,伤害递减得越快。
	 * @param DamageCauser - 伤害的直接来源,如爆炸的手雷或火箭弹。
	 * @param InstigatedByController - 造成伤害的控制器,通常是执行该行为的玩家控制器。
	 * @param DamagePreventionChannel - 阻挡伤害的通道。如果某个对象阻挡了该通道上的检测,则不会对目标应用伤害(如墙壁阻挡了视线)。
	 * @return 返回对目标计算后的范围攻击应造成的伤害
	 */
	UFUNCTION(BlueprintCallable, BlueprintAuthorityOnly, Category="RPGAbilitySystemLibrary|GameplayMechanics", meta=(WorldContext="WorldContextObject", AutoCreateRefTerm="IgnoreActors"))
	static float ApplyRadialDamageWithFalloff(AActor* TargetActor, float BaseDamage, float MinimumDamage, const FVector& Origin, float DamageInnerRadius, float DamageOuterRadius, 
	float DamageFalloff, AActor* DamageCauser = NULL, AController* InstigatedByController = NULL, ECollisionChannel DamagePreventionChannel = ECC_Visibility);

这个函数是从内置函数修改而来,只对单个角色进行计算,获取目标的所有碰撞组件,然后计算是否技能和目标之间是否有阻挡物,然后通过调用角色身上的TakeDamage函数获取到最终伤害并返回。

float URPGAbilitySystemLibrary::ApplyRadialDamageWithFalloff(AActor* TargetActor, float BaseDamage, float MinimumDamage, const FVector& Origin, float DamageInnerRadius,
	float DamageOuterRadius, float DamageFalloff, AActor* DamageCauser, AController* InstigatedByController, ECollisionChannel DamagePreventionChannel)
{
	// 判断目标角色是否死亡
	bool bIsDead = true;
	if(TargetActor->Implements<UCombatInterface>())
	{
		bIsDead = ICombatInterface::Execute_IsDead(TargetActor);
	}
	if(bIsDead)
	{
		return 0.f; //如果角色已经死亡,直接返回0
	}

	// 获取目标角色所有组件
	TArray<UActorComponent*> Components;
	TargetActor->GetComponents(Components);

	bool bIsDamageable = false; //判断攻击是能能够查看到目标
	TArray<FHitResult> HitList; //存储目标收到碰撞查询到的碰撞结果
	for (UActorComponent* Comp : Components)
	{
		UPrimitiveComponent* PrimitiveComp = Cast<UPrimitiveComponent>(Comp);
		if (PrimitiveComp && PrimitiveComp->IsCollisionEnabled())
		{
			FHitResult Hit;
			bIsDamageable = ComponentIsDamageableFrom(
				PrimitiveComp, Origin, DamageCauser, {}, DamagePreventionChannel, Hit
			);
			HitList.Add(Hit);
			if(bIsDamageable) break;
		}
	}

	//应用目标的伤害值
	float AppliedDamage = 0.f;

	if (bIsDamageable)
	{
		// 创建伤害事件
		FRadialDamageEvent DmgEvent;
		DmgEvent.DamageTypeClass = TSubclassOf<UDamageType>(UDamageType::StaticClass());
		DmgEvent.Origin = Origin;
		DmgEvent.Params = FRadialDamageParams(BaseDamage, MinimumDamage, DamageInnerRadius, DamageOuterRadius, DamageFalloff);
		DmgEvent.ComponentHits = HitList;
		
		// 应用伤害
		AppliedDamage = TargetActor->TakeDamage(BaseDamage, DmgEvent, InstigatedByController, DamageCauser);
	}

	return AppliedDamage;
}

ComponentIsDamageableFrom函数,是内置库里的函数,我这里直接复制出来,可以方便调用。

/** @RETURN 如果从 Origin 发出的武器射线击中了 VictimComp 组件,则返回 True。 OutHitResult 将包含击中的具体信息。 */
static bool ComponentIsDamageableFrom(UPrimitiveComponent* VictimComp, FVector const& Origin, AActor const* IgnoredActor, const TArray<AActor*>& IgnoreActors, ECollisionChannel TraceChannel, FHitResult& OutHitResult)
{
	// 配置碰撞查询参数,忽略指定的 Actor
	FCollisionQueryParams LineParams(SCENE_QUERY_STAT(ComponentIsVisibleFrom), true, IgnoredActor);
	LineParams.AddIgnoredActors( IgnoreActors );

	// 获取组件所在世界的指针
	UWorld* const World = VictimComp->GetWorld();
	check(World);

	// 使用组件的包围盒中心作为射线终点
	FVector const TraceEnd = VictimComp->Bounds.Origin;
	FVector TraceStart = Origin;
	// 如果起点和终点重合,微调起点以避免提前退出
	if (Origin == TraceEnd)
	{
		// 微调 Z 轴
		TraceStart.Z += 0.01f;
	}

	// 只有当通道合法时才执行射线检测
	if (TraceChannel != ECollisionChannel::ECC_MAX)
	{
		bool const bHadBlockingHit = World->LineTraceSingleByChannel(OutHitResult, TraceStart, TraceEnd, TraceChannel, LineParams);
		//::DrawDebugLine(World, TraceStart, TraceEnd, FLinearColor::Red, true);

		// 如果有阻挡物,检查是否为目标组件
		if (bHadBlockingHit)
		{
			if (OutHitResult.Component == VictimComp)
			{
				// 阻挡物是目标组件,返回 true
				return true;
			}
			else
			{
				// 击中其他阻挡物,记录日志并返回 false
				UE_LOG(LogDamage, Log, TEXT("Radial Damage to %s blocked by %s (%s)"), *GetNameSafe(VictimComp), *OutHitResult.GetHitObjectHandle().GetName(), *GetNameSafe(OutHitResult.Component.Get()));
				return false;
			}
		}
	}
	else
	{
		// 如果通道无效,输出警告
		UE_LOG(LogDamage, Warning, TEXT("ECollisionChannel::ECC_MAX is not valid! No falloff is added to damage"));
	}

	// 未击中任何物体,构造一个伪造的 HitResult 假设击中组件中心
	FVector const FakeHitLoc = VictimComp->GetComponentLocation();
	FVector const FakeHitNorm = (Origin - FakeHitLoc).GetSafeNormal();		// 法线指向伤害源
	OutHitResult = FHitResult(VictimComp->GetOwner(), VictimComp, FakeHitLoc, FakeHitNorm);
	return true;
}

在计算伤害时,我们只需要调用一下函数,传入所需参数,即可返回值,简单方便。
在这里插入图片描述

解决范围指示光环指针问题

我们触发技能后,范围光环默认在地面,如果指针瞄准到角色,会出现突然闪现一段位置,这是因为鼠标拾取到角色身上的位置,然后拾取到地面,水平偏移会突然闪现一段位置,为了解决这个问题,我们需要创建一个新的通道,这个通道将不会拾取场景中的角色
在这里插入图片描述
将角色身上的对此通过忽略,以及一些不必要的碰撞体也需要设置。比如角色的胶囊体,模型,武器等,还有相机上的碰撞。
在这里插入图片描述
在RPG.h文件里,增加对应通道的定义

#define CUSTOM_DEPTH_RED 250
#define ECC_PROJECTILE ECollisionChannel::ECC_GameTraceChannel1 //对投掷物响应的通道
#define ECC_TARGET_CHANNEL ECollisionChannel::ECC_GameTraceChannel2 //技能对攻击目标拾取的通道,只包含场景中的角色
#define ECC_EXCLUDEPLAYERS_CHANNEL ECollisionChannel::ECC_GameTraceChannel3 //技能范围选择时的通道,忽略场景中可动的角色

在PlayerController里,我们在鼠标拾取函数里,通过指示光环是否定义,来修改拾取使用的通道
在这里插入图片描述

展示一下运行效果
在这里插入图片描述

最后贴一下完整的技能蓝图,可以放大查看
在这里插入图片描述

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_30100043/article/details/143217712

ue5 gas 学习笔记8.0参考资料_cloudhu1989的博客-爱代码爱编程

UE5 GAS 学习笔记 前置技能:1.编程语言C++;2.Unreal Engine 5;3.Github和VS开发环境0.0 介绍 0.1案例预览 0.2配置插件1.0概念 1.1能力系统组件 1.2游戏标签 1.3属性 1.4属性集 1.5游戏效果 1.6技能 1.7任务 1.8特效 1.9技能系统全局 1.10预测 1.11目标2.0常用技能和

ue5 gas 学习笔记 10.2 gasshooter_cloudhu1989的博客-爱代码爱编程

文章目录 一 预览 二 逆推式解析 2.1 按键T 2.2 主武器能力 UE5 GAS 学习笔记目录 一 预览 GASShooter是一个基于Unreal Engine 5的GameplayAbilitySystem (GAS) 插件开发的 FPS/TPS 高级案例。 GASShooter 当前

ue5 gas 学习笔记 后记0_cloudhu1989的博客-爱代码爱编程

UE5 GAS 学习笔记 后记1 一 前言 二 视频教程 UE5 GAS 学习笔记目录 一 前言 关于这套学习笔记还会有很多后记,毕竟现在GAS还不是正式版本(当前0.1版本,

ue4动作游戏实例rpg action解析二:gas系统播放武器绑定的技能,以及ge效果_gas 播放蒙太奇-爱代码爱编程

一、GAS系统播放武器技能 官方实例激活技能通过装备系统数据激活,我先用武器数据资产直接激活 官方实例蒙太奇播放是自定义的AbilityTask,我先用更简单的方法实现效果 1.1、技能系统必要步骤: 1.1.1 插件启用AbilitySystem 1.1.2 PlayerCharacter绑定技能组件AbilitySystemComponent

5. ue5 rpg使用gas技能系统-爱代码爱编程

之前也介绍过GAS的使用: UE 5 GAS Gameplay Ability System UE 5 GAS 在项目中处理AttributeSet相关 UE 5 GAS 在项目中通过数据初始化 基础的讲解这里不再诉说,有兴

35. ue5 rpg制作火球术技能-爱代码爱编程

接下来,我们将制作技能了,总算迈进了一大步。首先回顾一下之前是如何实现技能触发的,然后再进入正题。 如果想实现我之前的触发方式的,请看此栏目的31-33篇文章,讲解了实现逻辑,这里总结一下: 首先创建一个DataAsset

42. ue5 rpg 实现火球术伤害-爱代码爱编程

上一篇,我们解决了火球术于物体碰撞的问题,现在火球术能够正确的和攻击目标产生碰撞。接下来,我们要实现火球术的伤害功能,在火球术击中目标后,给目标造成伤害。 实现伤害功能的思路是给技能一个GameplayEffect,在击中时

48. ue5 rpg 实现攻击伤害数字显示-爱代码爱编程

在前面的文章中,我们实现了对敌人的攻击的受击效果,并且能够降低目标的血量,实现死亡效果。相对于正常的游戏,我们还需要实现技能或者攻击对敌人造成的伤害数值,并直观的显示出来。 所以,接下来,我们要实现一个用户控件,来设置伤害数

89. ue5 gas rpg 实现伤害 冷却 消耗技能描述_ue5 ability 消耗 对蓝图公开-爱代码爱编程

在上一篇文章里,我们能够通过富文本显示多种格式的文字,并显示技能描述。在这一篇文章里,我们继续优化技能描述,将技能说需要显示的内容显示出来。 实现火球术的基础描述 首先,我们现实现火球术的基础描述,它属于投掷物类型的技能

ue实战篇一(动作游戏2): gas系统播放武器绑定的技能,以及ge效果_ue gas ge-爱代码爱编程

一、GAS系统播放武器技能 官方实例激活技能通过装备系统数据激活,我先用武器数据资产直接激活 官方实例蒙太奇播放是自定义的AbilityTask,我先用更简单的方法实现效果 1.1、技能系统必要步骤: 1.1.1 插件启用AbilitySystem 1.1.2 PlayerCharacter绑定技能组件AbilitySystemComponent

80. ue5 gas rpg 实现ui显示技能冷却进度功能_ue onactivegameplayeffectaddeddelegatetoself-爱代码爱编程

在上一篇文章里,我们实现了通过GE给技能增加资源消耗和技能冷却功能。UI也能够显示角色能够使用的技能的UI,现在还有一个问题,我们希望在技能释放进去冷却时,技能变成灰色,并在技能冷却完成,技能可以再次使用。 为了实现这个功能

97. ue5 gas rpg 实现闪电链技能(二)-爱代码爱编程

书接上回,如果没有查看上一篇文章的同学推荐先看上一章,我们接着实现闪电链技能。 在上一章最后,我们实现了闪电链的第一条链,能够正确显示特效,接下来,我们先实现它的音效和一些bug修复。 我们在多端网络里,只能查看到角色播

103. ue5 gas rpg 实现奥数爆发消耗和冷却 以及技能的描述-爱代码爱编程

接着上一篇,我们实现一下技能对玩家友好的设定,设置实现多个技能的描述,方便玩家查看技能的相关信息。 之前的闪电链的技能的描述我们也未实现,在这里,我们将它们一起实现。 实现技能描述 首先,我们对技能创建对应的派生类,用于

101. ue5 gas rpg 实现范围技能奥术爆发表现-爱代码爱编程

在上一篇文章里,我们实现了范围技能的范围指示功能。范围指示是在释放技能前,确认技能的攻击范围,在确认位置后,通过额外按键进行触发技能释放。 在这一篇里,我们将先实现在技能里使用范围指示,并能够播放对应的动作,特效和音效。