代码编织梦想

数据理解,就是理解数据。

理解数据,就是观察数据,获得更多数据的特点。

这里要对数据进行一些处理。

查看样本数据的均值、最大值、最小值、数量、标准差等;

查看更详细的数据分位数信息。

通过观察加深数据理解,为建模做准备。

延伸学习:


数据理解:深入探索与分析

在人工智能和机器学习的项目中,数据理解是至关重要的一步。它涉及到对数据集的深入探索和分析,以揭示数据的内在特性、模式、异常值以及潜在的问题。通过数据理解,我们可以更好地准备数据,为后续的建模工作奠定坚实的基础。

一、数据理解的重要性

数据理解是建模前的必要准备,它能够帮助我们:

  1. 识别数据问题:在数据集中,可能存在缺失值、异常值、重复值或格式错误等问题。通过数据理解,我们可以及时发现这些问题,并采取相应的处理措施。
  2. 了解数据分布:数据的分布特征对于选择合适的模型和算法至关重要。通过查看数据的均值、中位数、众数等统计量,我们可以初步了解数据的集中趋势和离散程度。
  3. 发现潜在关系:在某些情况下,数据集中的不同特征之间可能存在某种关联或依赖关系。通过数据理解,我们可以探索这些潜在关系,为后续的特征工程和模型优化提供线索。
  4. 评估数据质量:数据的质量直接影响模型的性能。通过数据理解,我们可以评估数据的完整性、准确性、一致性和时效性等方面,从而确保输入到模型中的数据是可靠和有效的。

二、数据理解的方法与技巧

在进行数据理解时,我们可以采用以下方法和技巧:

  1. 描述性统计:计算数据的均值、最大值、最小值、标准差等统计量,以了解数据的整体情况。这些统计量可以帮助我们初步判断数据的分布特征、离散程度和异常值情况。

    • 均值:均值是所有数据点的平均值,它反映了数据的中心位置。计算公式为:均值 = (数据1 + 数据2 + ... + 数据n) / n。
    • 最大值与最小值:最大值和最小值分别表示数据集中的最大和最小观测值。它们可以帮助我们了解数据的范围和边界。
    • 标准差:标准差衡量了数据点的离散程度。一个较小的标准差表示数据点比较接近均值,而较大的标准差则表示数据点分布较为分散。
  2. 分位数与箱线图:通过计算数据的分位数(如四分位数、十分位数等),我们可以更详细地了解数据的分布情况。同时,箱线图(Box Plot)是一种可视化工具,它展示了数据的最小值、下四分位数(Q1)、中位数(Q2)、上四分位数(Q3)和最大值,从而帮助我们直观地识别异常值和偏态分布。

箱线图(Boxplot)也称箱须图(Box-whisker Plot)、盒式图、盒状图或箱型图,是一种用作显示一组数据分散情况资料的统计图。因形状如箱子而得名。在各种领域也经常被使用,常见于品质管理。它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比 较。箱线图是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。

  1. 数据可视化:利用柱状图、折线图、散点图等可视化工具,我们可以直观地展示数据的分布、趋势和关系。通过对比不同图表中的信息,我们可以发现数据之间的潜在规律和异常现象。

  2. 相关性分析:计算不同特征之间的相关系数(如皮尔逊相关系数、斯皮尔曼秩相关系数等),以评估它们之间的线性关系强度和方向。这有助于我们了解特征之间的相互作用和影响。

  3. 特征工程:在数据理解的过程中,我们可能会发现一些对模型训练有益的新特征。通过特征构造、特征选择和特征转换等技术,我们可以增强数据的表达能力和预测性能。

三、数据理解的实践建议

在实际项目中,为了更好地进行数据理解,我们可以遵循以下建议:

  1. 从简单到复杂:先从基本的统计量和可视化开始,逐步深入到更复杂的分析和挖掘。这样可以帮助我们逐步加深对数据的理解。
  2. 保持好奇心:在探索数据时,要保持开放和好奇的心态。不要过早地做出结论或假设,而是让数据说话。
  3. 注重细节:在查看数据时,要关注每一个细节和异常现象。这些细节可能揭示了数据的重要特征或潜在问题。
  4. 与领域知识结合:在理解数据时,要结合领域知识和实际背景进行分析。这样可以帮助我们更准确地解释数据中的现象和规律。
  5. 持续学习与改进:数据理解是一个持续的过程。随着项目的进展和数据的变化,我们需要不断地更新和改进我们的理解方法和工具。

总之,数据理解是人工智能项目中不可或缺的一环。通过深入探索和分析数据,我们可以为后续的建模工作奠定坚实的基础,从而提高模型的性能和准确性。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/giszz/article/details/136176477

svd奇异值分解-爱代码爱编程

一、奇异值 奇异值(Singular Values)是线性代数中矩阵的重要性质之一,与奇异值分解(SVD)密切相关。让我们来更详细地了解一下奇异值的概念: 定义: 对于一个矩阵 ( A ),它的奇异值是矩阵 ( A ) 的奇异值分解 ( ) 中对角矩阵 ( ) 的对角线元素的非负实数平方根。换句话说,如果 ( A ) 是一个大小为 ( ) 的矩

基于 internlm 和 langchain 搭建你的知识库(三)-爱代码爱编程

基于 InternLM 和 LangChain 搭建你的知识库 大模型开发范式 Finetune 在大型语言模型中,Finetune(微调)是一种技术,用于调整预训练的模型以提高其在特定任务或数据集上的表现。这种方

【ai视野·今日nlp 自然语言处理论文速览 第七十八期】wed, 17 jan 2024-爱代码爱编程

AI视野·今日CS.NLP 自然语言处理论文速览 Wed, 17 Jan 2024 (showing first 100 of 163 entries) Totally 100 papers 👉上期速览✈更多精彩请移步

[python人工智能] 四十一.命名实体识别 (2)基于bigru-爱代码爱编程

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现威胁情报实体识别,利用BiLSTM-CRF算法实现对ATT&CK相关的技战术实体进行提取,是安全知识图谱构建的重要支撑。这篇

gpt翻译网站的加载与使用-爱代码爱编程

Sider: ChatGPT侧边栏 + GPTs, GPT-4 Turbo, 联网, 绘图 sider.ai https://chromewebstore.google.com/detail/sider-chatgpt%E

lstm参数详解-爱代码爱编程

        LSTM(长短期记忆网络)是一种特殊类型的循环神经网络(RNN),主要用于处理和预测序列数据的重要模型。以下是LSTM的主要参数及其含义(前两个参数必填): input_size: 输入特征的维度,即每个时间步输入张量的大小。hidden_size: 隐藏层的特征数量。它定义了LSTM单元输出的特征的维度。num_layers: LSTM

一阶段目标检测算法:流程详解-爱代码爱编程

目标检测是计算机视觉领域的一个重要研究方向,旨在识别图像中的物体并确定其位置和大小。一阶段目标检测算法以其较快的处理速度和较高的实时性而受到关注。本文将详细阐述一阶段目标检测算法的流程,帮助读者深入了解其原理和实现方法。 1. 预处理 在进行目标检测之前,通常需要对输入图像进行预处理,以提高检测性能。预处理步骤可能包括缩放、裁剪、归一化等操作,以减少图

强化学习(td3)-爱代码爱编程

TD3——Twin Delayed Deep Deterministic policy gradient 双延迟深度确定性策略梯度 TD3是DDPG的一个优化版本,旨在解决DDPG算法的高估问题 优化点: ①双重收集:采取两套critic收集,计算两者中较小的值,从而克制收集过估量成绩。 DDPG源于DQN,DQN源于Q_learning,这些算法

行人重识别-爱代码爱编程

在人的感知系统所获得的信息中,视觉信息大约占到80%~85%。行人重识别(person re-identification)是近几年智能视频分析领域兴起的一项新技术,属于在复杂视频环境下的图像处理和分析范畴,是许多监控和安防应用中的主要任务,并且在计算机视觉领域获得了越来越多的关注。下面我们就仔细来聊聊行人重识别(ReID)。 1.什么是行人重识别

chatgpt的大致技术原理-爱代码爱编程

当然可以,让我们从技术层面更详细地探讨一下ChatGPT的工作原理。 数据收集与预处理: 数据收集:ChatGPT首先会从各种来源(如网页、新闻、书籍等)收集大量的文本数据。这些数据为模型提供了丰富的语言模式和表达方式,

stable-爱代码爱编程

参考:https://huggingface.co/stabilityai/stable-cascade 下载:需要分别下载两个模型stabilityai/stable-cascade-prior与stabilityai/