代码编织梦想

文章开始前打个小广告——分享一份Python学习大礼包(激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程)点击领取,100%免费!

一、读取Excel文件

使用pandas的**read_excel()**方法,可通过文件路径直接读取。注意到,在一个excel文件中有多个sheet,因此,对excel文件的读取实际上是读取指定文件、并同时指定sheet下的数据。可以一次读取一个sheet,也可以一次读取多个sheet,同时读取多个sheet时后续操作可能不够方便,因此建议一次性只读取一个sheet。

当只读取一个sheet时,返回的是DataFrame类型,这是一种表格数据类型,它清晰地展示出了数据的表格型结构。具体写法为:

(1)不指定sheet参数,默认读取第一个sheet,
 df=pd.read_excel(“data_test.xlsx”)
(2)指定sheet名称读取,
 df=pd.read_excel(“data_test.xlsx”,sheet_name=“test1”)
(3)指定sheet索引号读取,
 df=pd.read_excel(“data_test.xlsx”,sheet_name=0) #sheet索引号从0开始

*同时读取多个sheet,以字典形式返回。(不推荐)
(1)指定多个sheet名称读取, df=pd.read_excel(“data_test.xlsx”,sheet_name=[“test1”,“test2”])
(2)指定多个sheet索引号读取,
df=pd.read_excel(“data_test.xlsx”,sheet_name=[0,1])
(3)混合指定sheet名称和sheet索引号读取,
df=pd.read_excel(“data_test.xlsx”,sheet_name=[0,“test2”])

二、DataFrame对象的结构

对内容的读取分有表头和无表头两种方式,默认情形下是有表头的方式,即将第一行元素自动置为表头标签,其余内容为数据;当在read_excel()方法中加上header=None参数时是不加表头的方式,即从第一行起,全部内容为数据。读取到的Excel数据均构造成并返回DataFrame表格类型(以下以df表示)。

对有表头的方式,读取时将自动地将第一行元素置为表头向量,同时为除表头外的各行内容加入行索引(从0开始)、各列内容加入列索引(从0开始)。如图所示

对无表头的方式,读取时将自动地为各行内容加入行索引(从0开始)、为各列内容加入列索引(从0开始),行索引从第一行开始。如图所示

三、用values方式获取数据

1.基本方法
df.values,获取全部数据,返回类型为ndarray(二维);
df.index.values,获取行索引向量,返回类型为ndarray(一维);
df.columns.values,获取列索引向量(对有表头的方式,是表头标签向量),返回类型为ndarray(一维)。

根据具体需要,通过ndarray的使用规则获取指定数据。数据获取的结构示意图如下所示。

有表头

无表头

2.获取指定数据的写法
(1)获取全部数据:
df.values,获取全部数据,返回类型为ndarray(二维)。

(2)获取某个值:
df.values[i , j],第i行第j列的值,返回类型依内容而定。

(3)获取某一行:
df.values[i],第i行数据,返回类型为ndarray(一维)。

(4)获取多行:
df.values[[i1 , i2 , i3]],第i1、i2、i3行数据,返回类型为ndarray(二维)。

(5)获取某一列:
df.values[: , j],第j列数据,返回类型为ndarray(一维)。

(6)获取多列:
df.values[:,[j1,j2,j3]],第j1、j2、j3列数据,返回类型为ndarray(二维)。

(7)获取切片:
df.values[i1:i2 , j1:j2],返回行号[i1,i2)、列号[j1,j2)左闭右开区间内的数据,返回类型为ndarray(二维)。

3.示例
带表头,excel内容为

Python脚本为

import pandas as pd

df = pd.read_excel("data_test.xlsx")

print("\n(1)全部数据:")
print(df.values)

print("\n(2)第2行第3列的值:")
print(df.values[1,2])

print("\n(3)第3行数据:")
print(df.values[2])

print("\n(4)获取第2、3行数据:")
print(df.values[[1,2]])

print("\n(5)第2列数据:")
print(df.values[:,1])

print("\n(6)第2、3列数据:")
print(df.values[:,[1,2]])

print("\n(7)第2至4行、第3至5列数据:")
print(df.values[1:4,2:5])

执行结果

四、用loc和iloc方式获取数据

1.基本写法
  loc和iloc方法是通过索引定位的方式获取数据的,写法为loc[A, B]和iloc[A, B]。其中A表示对行的索引,B表示对列的索引,B可缺省。A、B可为列表或i1:i2(切片)的形式,表示多行或多列。

这两个方法的区别是,loc将参数当作标签处理,iloc将参数当作索引号处理。也就是说,在有表头的方式中,当列索引使用str标签时,只可用loc,当列索引使用索引号时,只可用iloc;在无表头的方式中,索引向量也是标签向量,loc和iloc均可使用;在切片中,loc是闭区间,iloc是半开区间。

获取指定数据的写法:
(1)获取全部数据:
df.loc[: , :].values

df.iloc[: , :].values,返回类型为ndarray(二维)。

(2)获取某个值:
无表头
df.loc[i, j]

df.iloc[i, j],第i行第j列的值,返回类型依内容而定。

有表头
df.loc[i, “序号”],第i行‘序号’列的值。

df.iloc[i, j],第i行第j列的值。

(3)获取某一行:
df.loc[i].values

df.iloc[i].values,第i行数据,返回类型为ndarray(一维)。

(4)获取多行:
df.loc[[i1, i2, i3]].values,

df.iloc[[i1, i2, i3]].values,第i1、i2、i3行数据,返回类型为ndarray(二维)。

(5)获取某一列:
无表头
df.loc[:, j].values

df.iloc[:, j].values,第j列数据,返回类型为ndarray(一维)。

有表头
df.loc[:,“姓名”].values,‘姓名’列数据,返回类型为ndarray(一维)。

df.iloc[:, j].values,第j列数据,返回类型为ndarray(一维)。

(6)获取多列:
无表头
df.loc[:, [j1 , j2]].values

df.iloc[:, [j1 , j2]].values,第j1、j2列数据,返回类型为ndarray(二维)。

有表头
df.loc[:, [“姓名”,“性别”]].values,‘姓名’、‘性别’列数据,返回类型为ndarray(二维);
df.iloc[:, [j1 , j2]].values,第j1、j2列数据,返回类型为ndarray(二维)。

(7)获取切片:
无表头
df.loc[i1:i2, j1:j2].values,返回行号[i1,i2]、列号[j1,j2]闭区间内的数据,返回类型为ndarray(二维);
df.iloc[i1:i2, j1:j2].values,返回行号[i1,i2)、列号[j1,j2)左闭右开区间内的数据,返回类型为ndarray(二维)。

有表头
df.loc[i1:i2, “序号”:“姓名”].values,返回行号[i1,i2]、列号[“序号”,“姓名”]闭区间的数据,返回类型为ndarray(二维);
df.iloc[i1:i2, j1:j2].values,返回行号[i1,i2)、列号[j1,j2)左闭右开区间内的数据,返回类型为ndarray(二维)。

2.示例
带表头,excel内容为

Python脚本为

import pandas as pd

df = pd.read_excel("data_test.xlsx")

print("\n(1)全部数据:")
print(df.iloc[:,:].values)

print("\n(2)第2行第3列的值:")
print(df.iloc[1,2])

print("\n(3)第3行数据:")
print(df.iloc[2].values)

print("\n(4)第2列数据:")
print(df.iloc[:,1].values)

print("\n(5)第6行的姓名:")
print(df.loc[5,"姓名"])

print("\n(6)第2至3行、第3至4列数据:")
print(df.iloc[1:3,2:4].values)

执行结果

关于Python技能储备!

如果你是准备学习Python或者正在学习(想通过Python兼职),下面这些你应该能用得上:
【点击这里】领取!
包括:激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!
Python所有方向的学习路线图,清楚各个方向要学什么东西
100多节Python课程视频,涵盖必备基础、爬虫和数据分析
100多个Python实战案例,学习不再是只会理论
华为出品独家Python漫画教程,手机也能学习
历年互联网企业Python面试真题,复习时非常方便
****

在这里插入图片描述

在这里插入图片描述

以上就是本次分享的全部内容。我们下期见~

End

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/2301_78217634/article/details/141999004

python用pandas读取excel_python 中使用pandas读写excel文件-爱代码爱编程

import pandas as pd #使用pandas读取excel文件 xls_file=pd.ExcelFile('./data/workbook.xls') xls_file.sheet_names#显示出读入excel文件中的表名字 table1=xls_file.parse('first_sheet') table2=xls_file.par

python用pandas读取excel_使用Pandas在python中读取Excel文件-爱代码爱编程

I am trying to read an excel file this way : newFile = pd.ExcelFile(PATH\FileName.xlsx) ParsedData = pd.io.parsers.ExcelFile.parse(newFile) which throws an error that says two ar

python pandas读取excel-Python使用Pandas读写EXCEL文件教程-爱代码爱编程

教程开始之前,我们需要首先了解一下什么是Excel,这有助于理解之后教程中的内容。 什么是Excel Excel 是微软出品的和款办公软件 它能够创建和编辑以”xls”和”xlsx”为后缀的电子表格文件 Excel文件可以在Windows、macOS、Android和iOS系统中使用 自1993年发布5.0 版本以来,Excel 已经成为电子表格

用python的pandas读取excel文件中的数据_npm_run_dev__的博客-爱代码爱编程

一、读取Excel文件   使用pandas的read_excel()方法,可通过文件路径直接读取。注意到,在一个excel文件中有多个sheet,因此,对excel文件的读取实际上是读取指定文件、并同时指定sheet下的数据。可以一次读取一个sheet,也可以一次读取多个sheet,同时读取多个sheet时后续操作可能不够方便,因此建议一次性只读取一个

python常用库介绍(1)-利用pandas读取excel文件-爱代码爱编程

        目录 一、安装相关库 1.1安装pandas 1.2 安装 openpyxl 和 xlrd 的库 二、读取excel文件 2.1excel文件介绍  2.2读取文件后不同将数据存放为不同数据类型 2.2.1直接存放为datafarame对象 2.2.2 read_excel常用参数说明          网上介绍p

python pandas 操作 excel 详解_pandas处理excel(1)_pandas操作excel-爱代码爱编程

df.to_excel(r’C:\Users\Administrator\Desktop\Temp\1.xlsx’) **指定索引前后,效果对比:** ![在这里插入图片描述](https://img-blog.c

python自动化办公篇—pandas操作excel:读取+查看+选择+清洗+排序+筛选+函数+写入_python pandas excel-爱代码爱编程

目录 专栏导读库的介绍库的安装1、读取数据2、查看数据3、选择数据4、数据清洗5、数据排序6、数据筛选7、数据操作8、数据写入总结 专栏导读 文章名称链接Python自动化办公—pyautogui图

python中使用pandas读写excel数据_pandas库覆盖表格-爱代码爱编程

Excel作为常用的数据存储和展示工具,在数据处理和分析过程中扮演着重要角色。pandas作为Python中一个强大的数据处理库,提供了便捷的接口来读写Excel文件。本文将介绍如何使用pandas来读取和写入Excel文件中的数据。 一、安装必要的库 首先,确保你已经安装了pandas和openpyxl库。pandas用于数据处理,而openpyxl

python的pandas读取excel文件中的数据-爱代码爱编程

一、前言 hello呀!各位铁子们大家好呀,我是一个在软件测试行业摸爬滚打十几年的老江湖了,今天呢来和大家聊一聊用Python的pandas读取excel文件中的数据。 二、读取Excel文件 使用pandas的read_excel()方法,可通过文件路径直接读取。注意到,在一个excel文件中有多个sheet,因此,对excel文件的读取实际上是读

pandas库pd.read_excel操作详解_pd.read excel-爱代码爱编程

pandas库pd.read_excel操作详解 在数据处理与分析领域,pandas库作为Python中的明星库之一,因其强大的数据处理能力而受到广泛青睐。其中pd.read_excel函数更是处理Excel文件不可或缺的

pandas操作excel文件_pandas读取excel-爱代码爱编程

pandas操作Excel文件 一、前言二、指定读取的工作表与header设置2.1指定工作表2.2header设置 三、读取Excel数据3.1iloc读取数据3.2read_excel读取数据3.3l