代码编织梦想

如果你用group 命令的话可能会遇到下面两种错误:

a.)命令:db.flogsamplelog.group({cond:{datetimes":20111027},key:{"pid":"1"},initial:{"count":0},reduce:function(doc,prev){if(doc.pid==prev.pid)prev.count++;}})

error:

Mon Oct 31 12:00:00uncaught exception: group command failed: {

"errmsg" : "exception: group() can't handle more than 10000 unique keys",

"code" : 10043,

"ok" : 0

} 直接访问shard server端口

b.)命令:db.flogsamplelog.group({cond:{"pid":322963713,"datetimes":20111027},key:{"worktype":"1"},initial:{"count":0},reduce:function(doc,prev){if(doc.worktype==prev.worktype)prev.count++;}})

error:

Mon Oct 31 12:00:09

uncaught exception: group command failed: { "ok" : 0, "errmsg" : "can't do

command: group on sharded collection" } 直接访问route server端口

其次我们在mongodb权威指南上也能发现这样的语句:

The price of using MapReduce is speed: group is not particularly speedy,

but

MapReduce is slower and is not supposed to be used in “real time.” You

run

MapReduce as a background job, it creates a collection of results, and

then

you can query that collection in real time.

经过测试发现group by效率在建立索引之后也没有实质性提高。

具体命令中涉及到的字段以及表定义,这里就不在敷衍。

分享到:

18e900b8666ce6f233d25ec02f95ee59.png

72dd548719f0ace4d5f9bca64e1d7715.png

2011-10-31 12:12

浏览 8156

分类:数据库

评论

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接: https://blog.csdn.net/weixin_30988079/article/details/113416611