【数据结构算法】1.数组(1)_m0_54479347的博客-爱代码爱编程
一、数组基础知识
数组是存放在连续内存空间上的相同类型数据的集合。可以方便的通过下标索引的方式获取到对应的数据。
数组下标都是从0开始的。
数组内存空间的地址是连续的
正是因为数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。例如删除下标为3的元素,需要对下标为3的元素后面的所有元素都要做移动操作
C++中要注意vector 和 array的区别,vector的底层实现是array,严格来讲vector是容器,不是数组。
数组的元素是不能删的,只能覆盖。
二、二维数组
二维数组在内存的空间地址是连续的吗?在C++中二维数组是连续分布的。
void test_arr() {
int array[2][3] = {
{0, 1, 2},
{3, 4, 5}
};
cout << &array[0][0] << " " << &array[0][1] << " " << &array[0][2] << endl;
cout << &array[1][0] << " " << &array[1][1] << " " << &array[1][2] << endl;
}
int main() {
test_arr();
}
输出结果:
0x7ffee4065820 0x7ffee4065824 0x7ffee4065828
0x7ffee406582c 0x7ffee4065830 0x7ffee4065834
地址为16进制
0x7ffee4065820 与 0x7ffee4065824 差了一个4,就是4个字节,因为这是一个int型的数组,所以两个相邻数组元素地址差4个字节。
0x7ffee4065828 与 0x7ffee406582c 也是差了4个字节,在16进制里8 + 4 = c,c就是12。
704 二分查找
二分法使用条件:分析题干可知,数组升序、且无重复元素时才可以使用。(有重复元素时使用二分法返回的元素下标可能不唯一)
1.左闭右闭
left <= right
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1
2.左闭右开
left < right
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的。
if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
细节:int middle = left + ((right - left) >> 1);
或者用int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
27 移除元素
1.双指针法(快慢指针法):
通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。
2.定义快慢指针
快指针:寻找新数组的元素 ,新数组就是不含有目标元素的数组
慢指针:指向更新 新数组下标的位置
// 时间复杂度:O(n)
// 空间复杂度:O(1)
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int slowIndex = 0;
for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
if (val != nums[fastIndex]) {
nums[slowIndex++] = nums[fastIndex];
}
}
return slowIndex;
}
};