代码编织梦想

🚀 优质资源分享 🚀

学习路线指引(点击解锁)知识定位人群定位
🧡 Python实战微信订餐小程序 🧡进阶级本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。
💛Python量化交易实战💛入门级手把手带你打造一个易扩展、更安全、效率更高的量化交易系统

在前几篇文章中给大家具体解释了驱动与应用层之间正向通信的一些经典案例,本章将继续学习驱动通信,不过这次我们学习的是通过运用Async异步模式实现的反向通信,反向通信机制在开发中时常被用到,例如一个杀毒软件如果监控到有异常进程运行或有异常注册表被改写后,该驱动需要主动的通知应用层进程让其知道,这就需要用到驱动反向通信的相关知识点,如下将循序渐进的实现一个反向通信案例。

在开始学习Async反向通信之前先来研究一个Sync正向通信案例,不论是正向反向通信其在通信模式上与《驱动开发:通过ReadFile与内核层通信》所介绍的通信模式基本一致,都是通过ReadFile触发驱动中的IRP_MJ_READ读取派遣,唯一的区别是在传输数据时使用了MmGetSystemAddressForMdl方式,它将给定MDL描述的物理页面映射到系统空间,并调用RtlCopyMemory()将全局字符串复制到这个空间内,这样客户端就可以循环读取内核传出的数据。

我们来看驱动端代码是如何实现的这个功能,代码并没有什么特殊的无法理解的点,只是需要注意我们在驱动入口调用IoCreateDevice()时传入了第二个参数FILE_DEVICE_EXTENSION,该参数的作用是,创建设备时,指定设备扩展内存的大小,传一个值进去,就会给设备分配一块非页面内存。

#include 
#include 

// 保存一段非分页内存,用于给全局变量使用
#define FILE\_DEVICE\_EXTENSION 4096

// 定义全局字符串
static int global_count = 0;
static char global_char[5][128] = { 0 };

// 驱动绑定默认派遣函数
NTSTATUS \_DefaultDispatch(PDEVICE_OBJECT _pDeviceObject, PIRP _pIrp)
{
	_pIrp->IoStatus.Status = STATUS_NOT_SUPPORTED;
	_pIrp->IoStatus.Information = 0;
	IoCompleteRequest(_pIrp, IO_NO_INCREMENT);
	return _pIrp->IoStatus.Status;
}

// 驱动创建后触发
NTSTATUS \_SyncCreateCloseDispatch(PDEVICE_OBJECT _pDevcieObject, PIRP _pIrp)
{
	_pIrp->IoStatus.Status = STATUS_SUCCESS;
	_pIrp->IoStatus.Information = 0;
	IoCompleteRequest(_pIrp, IO_NO_INCREMENT);
	return _pIrp->IoStatus.Status;
}

// 应用层读数据后触发
NTSTATUS \_SyncReadDispatch(PDEVICE_OBJECT _pDeviceObject, PIRP _pIrp)
{
	NTSTATUS status = STATUS_SUCCESS;
	PIO_STACK_LOCATION pIrpStack = IoGetCurrentIrpStackLocation(_pIrp);
	PVOID pBuffer = NULL;
	ULONG uBufferLen = 0;

	do
	{
		// 读写请求使用的是直接I/O方式
		pBuffer = MmGetSystemAddressForMdl(_pIrp->MdlAddress);
		if (pBuffer == NULL)
		{
			status = STATUS_UNSUCCESSFUL;
			break;
		}
		uBufferLen = pIrpStack->Parameters.Read.Length;
		DbgPrint("读字节长度: %d \n", uBufferLen);

		// 最大支持20字节读请求
		uBufferLen = uBufferLen >= 20 ? 20 : uBufferLen;

		// 输出五次字符串
		if (global_count < 5)
		{
			RtlCopyMemory(pBuffer, global_char[global_count], uBufferLen);
			global_count = global_count + 1;
		}

	} while (FALSE);

	// 填写返回状态及返回大小
	_pIrp->IoStatus.Status = status;
	_pIrp->IoStatus.Information = uBufferLen;

	// 完成IRP
	IoCompleteRequest(_pIrp, IO_NO_INCREMENT);
	return status;
}

// 卸载驱动
VOID \_UnloadDispatch(PDRIVER_OBJECT _pDriverObject)
{
	// 删除创建的设备
	UNICODE_STRING  Win32DeviceName;
	RtlInitUnicodeString(&Win32DeviceName, L"\\DosDevices\\LySharkSync");
	IoDeleteDevice(_pDriverObject->DeviceObject);
}

// 驱动入口
NTSTATUS DriverEntry(PDRIVER_OBJECT _pDriverObject, PUNICODE_STRING _pRegistryPath)
{
	UNICODE_STRING DeviceName, Win32DeivceName;
	PDEVICE_OBJECT pDeviceObject = NULL;
	NTSTATUS status;
	HANDLE hThread;
	OBJECT_ATTRIBUTES ObjectAttributes;

	// 设置符号名
	RtlInitUnicodeString(&DeviceName, L"\\Device\\LySharkSync");
	RtlInitUnicodeString(&Win32DeivceName, L"\\DosDevices\\LySharkSync");

	// 循环初始化IRP函数
	for (ULONG i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++)
	{
		_pDriverObject->MajorFunction[i] = _DefaultDispatch;
	}

	// 再次覆盖派遣函数
	_pDriverObject->MajorFunction[IRP_MJ_CREATE] = _SyncCreateCloseDispatch;
	_pDriverObject->MajorFunction[IRP_MJ_CLOSE] = _SyncCreateCloseDispatch;
	_pDriverObject->MajorFunction[IRP_MJ_READ] = _SyncReadDispatch;
	_pDriverObject->DriverUnload = _UnloadDispatch;

	// 分配一个自定义扩展 大小为sizeof(DEVEXT)
	// By: LyShark.com
	status = IoCreateDevice(_pDriverObject, sizeof(FILE_DEVICE_EXTENSION), &DeviceName, FILE_DEVICE_UNKNOWN, 0, FALSE, &pDeviceObject);
	if (!NT\_SUCCESS(status))
		return status;
	
	if (!pDeviceObject)
		return STATUS_UNEXPECTED_IO_ERROR;

	// 为全局变量赋值
	strcpy(global_char[0], "hi,lyshark A");
	strcpy(global_char[1], "hi,lyshark B");
	strcpy(global_char[2], "hi,lyshark C");
	strcpy(global_char[3], "hi,lyshark D");
	strcpy(global_char[4], "hi,lyshark E");

	// 指定读写方式为 直接I/O MDL模式
	pDeviceObject->Flags |= DO_DIRECT_IO;

	// 数据传输时地址校验大小
	pDeviceObject->AlignmentRequirement = FILE_WORD_ALIGNMENT;
	status = IoCreateSymbolicLink(&Win32DeivceName, &DeviceName);

	pDeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;
	return STATUS_SUCCESS;
}

对于应用层来说并没有什么特别的,同样调用ReadFile读取内核中的参数,同样for循环读取五次,代码如下:

#include 
#include 

int main(int argc, char *argv[])
{
	HANDLE hFile;
	char Buffer[10] = { 0 };
	DWORD dwRet = 0;
	BOOL bRet;

	hFile = CreateFileA("\\\\.\\LySharkSync", GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
	if (hFile == INVALID_HANDLE_VALUE)
		return 0;

	for (int x = 0; x < 5; x++)
	{
		bRet = ReadFile(hFile, Buffer, 20, &dwRet, NULL);
		if (!bRet)
		{
			CloseHandle(hFile);
			return 0;
		}
		printf("读入数据: %s -> 读取长度: %d \n", Buffer, dwRet);
	}
	return 0;
}

这段代码运行效果如下:

与同步模式不同,异步模式虽然同样使用ReadFile实现通信,但在通信中引入了Event事件通知机制,这也是异步与同步最大的区别所在,用户层可以分别创建多个Event事件,等待内核依次做出相应并最终一并返回。

首先驱动内定义了_DeviceExtension自定义接口,该接口用于保存此次事件所对应的Irp以及其所对应的DPC时间等。

异步分发函数_AsyncReadDispatch同样是被IRP_MJ_READ派遣函数触发的,触发后其内部会首先IoGetCurrentIrpStackLocation得到当前IRP的堆栈信息,然后设置IoMarkIrpPending()并最终将该IRP通过InsertTailList()插入到IRP链表内等待被处理。

  • IoMarkIrpPending
    • 用于标记指定的IRP,标志着某个驱动的分发例程(分发函数)因需要被其他的驱动程序进一步处理最终返回STATUS_PENDING状态。

函数_CustomDpc则是定时器内部要执行的具体操作,在DriverEntry驱动入口处做了如下初始化,初始化了链表,并初始化了一个定时器,最后启动这个定时器每隔1秒都会执行一次_CustomDpc如果我们的IRP链表内IsListEmpty() 检测存在数据,则会主动拷贝内存RtlCopyMemory并推送到应用层。

// 初始化IRP链表
InitializeListHead(&pDevExt->IrpList);
// 初始化定时器
KeInitializeTimer(&(pDevExt->timer));
// 初始化DPC pDevExt是传给\_CustomDpc函数的参数
KeInitializeDpc(&pDevExt->dpc, (PKDEFERRED_ROUTINE)_CustomDpc, pDevExt);

// 设置定时时间位1s
pDevExt->liDueTime = RtlConvertLongToLargeInteger(-10000000);
// 启动定时器
KeSetTimer(&pDevExt->timer, pDevExt->liDueTime, &pDevExt->dpc);

驱动层完成代码如下所示:

#include 

// 自定义接口扩展
typedef struct \_DeviceExtension
{
	LIST_ENTRY IrpList;
	KTIMER timer;
	LARGE_INTEGER liDueTime;
	KDPC dpc;
}DEV_EXT, *PDEV_EXT;

// 默认派遣函数
NTSTATUS \_DefaultDispatch(PDEVICE_OBJECT _pDeviceObject, PIRP _pIrp)
{
	_pIrp->IoStatus.Status = STATUS_NOT_SUPPORTED;
	_pIrp->IoStatus.Information = 0;
	IoCompleteRequest(_pIrp, IO_NO_INCREMENT);
	return _pIrp->IoStatus.Status;
}

// 创建派遣函数
NTSTATUS \_AsyncCreateCloseDispatch(PDEVICE_OBJECT _pDevcieObject, PIRP _pIrp)
{
	_pIrp->IoStatus.Status = STATUS_SUCCESS;
	_pIrp->IoStatus.Information = 0;
	IoCompleteRequest(_pIrp, IO_NO_INCREMENT);
	return  _pIrp->IoStatus.Status;
}

// 读取派遣函数
NTSTATUS \_AsyncReadDispatch(PDEVICE_OBJECT _pDeviceObject, PIRP _pIrp)
{
	NTSTATUS status;
	PIO_STACK_LOCATION pIrpStack = IoGetCurrentIrpStackLocation(_pIrp);
	PDEV_EXT pDevExt = (PDEV_EXT)_pDeviceObject->DeviceExtension;

	IoMarkIrpPending(_pIrp);

	// 将IRP插入自定义链表中插入的是ListEntry
	InsertTailList(&pDevExt->IrpList, &_pIrp->Tail.Overlay.ListEntry);

	// 返回pending 主要返回给I/O管理器的值必须和IRP的Pending标志位一致
	// By: LyShark.com
	// 即调用iomarkirppending和返回值要一致 
	return STATUS_PENDING;
}

// DPC线程
VOID \_CustomDpc(PKDPC Dpc, PVOID DeferredContext, PVOID SystemArgument1, PVOID SystemArgument2)
{
	PIRP pIrp;
	PDEV_EXT pDevExt = (PDEV_EXT)DeferredContext;
	PVOID pBuffer = NULL;
	ULONG uBufferLen = 0;
	PIO_STACK_LOCATION pIrpStack = NULL;

	do
	{
		if (!pDevExt)
		{
			break;
		}

		// 检查尾端IRP链表是否为空 为空则跳出
		if (IsListEmpty(&pDevExt->IrpList))
		{
			break;
		}

		// 从IRP链表中取出一个IRP并完成该IRP 取出的是ListEntry的地址
		PLIST_ENTRY pListEntry = (PLIST_ENTRY)RemoveHeadList(&pDevExt->IrpList);
		if (!pListEntry)
			break;

		pIrp = (PIRP)CONTAINING\_RECORD(pListEntry, IRP, Tail.Overlay.ListEntry);
		pIrpStack = IoGetCurrentIrpStackLocation(pIrp);

		DbgPrint("当前DPC Irp: 0x%x\n", pIrp);

		// 驱动程序的读写方式位直接I/O
		pBuffer = MmGetSystemAddressForMdl(pIrp->MdlAddress);
		if (pBuffer == NULL)
		{
			pIrp->IoStatus.Status = STATUS_UNSUCCESSFUL;
			pIrp->IoStatus.Information = 0;
			IoCompleteRequest(pIrp, IO_NO_INCREMENT);

			break;
		}
		uBufferLen = pIrpStack->Parameters.Read.Length;
		DbgPrint("读取DPC长度: %d\n", uBufferLen);

		// 支持5字节以下的读请求
		uBufferLen = uBufferLen > 13 ? 13 : uBufferLen;

		// 复制请求内容
		RtlCopyMemory(pBuffer, "hello lyshark", uBufferLen);

		pIrp->IoStatus.Status = STATUS_SUCCESS;
		pIrp->IoStatus.Information = uBufferLen;

		// 完成该IRP
		IoCompleteRequest(pIrp, IO_NO_INCREMENT);
	} while (FALSE);

	// 重新设置定时器
	KeSetTimer(&pDevExt->timer, pDevExt->liDueTime, &pDevExt->dpc);
}

// 卸载驱动
VOID \_UnloadDispatch(PDRIVER_OBJECT _pDriverObject)
{
	UNICODE_STRING Win32DeviceName;
	PDEV_EXT pDevExt = (PDEV_EXT)_pDriverObject->DeviceObject->DeviceExtension;

	RtlInitUnicodeString(&Win32DeviceName, L"\\DosDevices\\LySharkAsync");

	// 删除定时器
	// LyShark
	KeCancelTimer(&pDevExt->timer);
	// 删除创建的设备
	IoDeleteDevice(_pDriverObject->DeviceObject);
}

// 驱动入口
NTSTATUS DriverEntry(PDRIVER_OBJECT _pDriverObject, PUNICODE_STRING _pRegistryPath)
{
	UNICODE_STRING DeviceName, Win32DeivceName;
	PDEVICE_OBJECT pDeviceObject = NULL;
	NTSTATUS status;
	PDEV_EXT pDevExt = NULL;
	HANDLE hThread;
	OBJECT_ATTRIBUTES ObjectAttributes;
	CLIENT_ID CID;

	RtlInitUnicodeString(&DeviceName, L"\\Device\\LySharkAsync");
	RtlInitUnicodeString(&Win32DeivceName, L"\\DosDevices\\LySharkAsync");

	for (ULONG i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++)
	{
		_pDriverObject->MajorFunction[i] = _DefaultDispatch;
	}

	_pDriverObject->MajorFunction[IRP_MJ_CREATE] = _AsyncCreateCloseDispatch;
	_pDriverObject->MajorFunction[IRP_MJ_CLOSE] = _AsyncCreateCloseDispatch;
	_pDriverObject->MajorFunction[IRP_MJ_READ] = _AsyncReadDispatch;
	_pDriverObject->DriverUnload = _UnloadDispatch;

	// 分配自定义扩展
	status = IoCreateDevice(_pDriverObject, sizeof(DEV_EXT), &DeviceName, FILE_DEVICE_UNKNOWN, 0, FALSE, &pDeviceObject);
	if (!NT\_SUCCESS(status))
		return status;
	if (!pDeviceObject)
		return STATUS_UNEXPECTED_IO_ERROR;

	pDeviceObject->Flags |= DO_DIRECT_IO;
	pDeviceObject->AlignmentRequirement = FILE_WORD_ALIGNMENT;
	status = IoCreateSymbolicLink(&Win32DeivceName, &DeviceName);

	pDeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;
	pDevExt = (PDEV_EXT)pDeviceObject->DeviceExtension;

	// 初始化IRP链表
	InitializeListHead(&pDevExt->IrpList);
	// 初始化定时器
	KeInitializeTimer(&(pDevExt->timer));
	// 初始化DPC pDevExt是传给\_CustomDpc函数的参数
	KeInitializeDpc(&pDevExt->dpc, (PKDEFERRED_ROUTINE)_CustomDpc, pDevExt);

	// 设置定时时间位1s
	pDevExt->liDueTime = RtlConvertLongToLargeInteger(-10000000);
	// 启动定时器
	KeSetTimer(&pDevExt->timer, pDevExt->liDueTime, &pDevExt->dpc);

	return STATUS_SUCCESS;
}

驱动层说完了,接下来是应用层,对于应用层来说,需要使用CreateEvent打开通知事件,或者叫做事件对象,然后当有通知时,则直接使用ReadFile读取对应的缓冲区,当所有读取全部结束WaitForMultipleObjects等待结束即输出结果。

#include 
#include 

int main(int argc, char *argv[])
{
	HANDLE hFile;
	char Buffer[3][32] = { 0 };
	DWORD dwRet[3] = { 0 };
	OVERLAPPED ol[3] = { 0 };
	HANDLE hEvent[3] = { 0 };

	// By:LyShark
	hFile = CreateFileA("\\\\.\\LySharkAsync", GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING,
		FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
		NULL);
	if (INVALID_HANDLE_VALUE == hFile)
		return  0;

	// event用来通知请求完成
	hEvent[0] = CreateEvent(NULL, TRUE, FALSE, NULL);
	ol[0].hEvent = hEvent[0];

	hEvent[1] = CreateEvent(NULL, TRUE, FALSE, NULL);
	ol[1].hEvent = hEvent[1];

	hEvent[2] = CreateEvent(NULL, TRUE, FALSE, NULL);
	ol[2].hEvent = hEvent[2];

	// 读取事件内容到缓存
	ReadFile(hFile, Buffer[0], 13, &dwRet[0], &ol[0]);
	ReadFile(hFile, Buffer[1], 13, &dwRet[1], &ol[1]);
	ReadFile(hFile, Buffer[2], 13, &dwRet[2], &ol[2]);

	// 等待三个事件执行完毕
	WaitForMultipleObjects(3, hEvent, TRUE, INFINITE);

	// 输出结果
	printf("缓存LyShark A: %s \n", Buffer[0]);
	printf("缓存LyShark B: %s \n", Buffer[1]);
	printf("缓存LyShark C: %s \n", Buffer[2]);

	CloseHandle(hFile);
	return  0;
}

这段代码最终运行效果如下:

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u012804784/article/details/127158376

linux内核编译详解-爱代码爱编程

不习惯读英文资料的非LINUX高手 声卡不响光驱不转连不上网等等,只要有问题就行 开发嵌入式操作系统 现在流行的ODL(only disk linux)中做内核部分,那些文章不介绍此点内容。我正在做 ,完工后整理资料。 BY THE WAY ,想成为LINUX高手吗?你需要熟练掌握KERNELCOMPILE 、XCONFIGRATER 、LI

构建linux内核驱动demo子系统示例-爱代码爱编程

一般在编写嵌入式Linux内核驱动时,最简单的情况下往往只需要写一个简单的misc驱动,它仅需要兼容一种硬件外设和一种特定的芯片平台即可,这种驱动的最大缺点就是可扩展性和可移植性较差,往往在单板硬件上存在小幅的改动就需要更改驱动源代码,有时在甚至在硬件上增加了一个相同的外设时需要重新为其写一个几乎一模一样的驱动。 一个好的Linux内核驱动是要求在尽

android系统开发知识框架和遇到的坑_迷途无归的博客-爱代码爱编程

1、android设备竖、横屏 android 5.1 launcherpackages\apps\Launcher2 packages\apps\Launcher3  AndroidManifest.xml android:screenOrientation="sensor" 设置由传感器转屏 另外经验证,【测试发现强制转换无效:android:s

反向 ajax,第 5 部分: 事件驱动的 web 开发_hebeind100的博客-爱代码爱编程

简介 本 系列 文章向您展示如何使用反向 Ajax 技术开发事件驱动的 Web 程序。第 1 部分 介绍了反向 Ajax、轮询、流、Comet 和长轮询。第 2 部分 介绍了如何使用 WebSocket,还讨论了使用 Comet 和 WebSocket 的 Web 服务器的限制。第 3 部分 探讨了当您需要支持多个服务器或提供一个用户可以自己的服

linux 内核配置项详解 myimx6-爱代码爱编程

CONFIG_LOCALVERSION="-myimx6"                     #本地版本 CONFIG_KERNEL_LZO=y                               #内核混合算法 CONFIG_DEFAULT_HOSTNAME="myzr"                     #默认主机名称 CONFI

大型分布式网站架构设计与实践-爱代码爱编程

阅读文本大概需要3分钟。 SOA和RPC 随着互联网规模发展,面向服务的体系架构(SOA)成为主流的架构方式,SOA的本质思想是高内聚、低耦合地实现分治,各个系统之间通过服务的方式进行交互,这样保证了交互的标准性,这对于一个复杂的大规模系统来说显得尤为重要,子系统之间能够标准清晰地互相配合与沟通。同时,随着数据规模的飞速发展,从单一应用架构,再到

1.1.4 网络编程:Reactor与Proactor的概念与应用-爱代码爱编程

1、标准定义 在分布式系统尤其是服务器这一类事件驱动应用中,虽然这些请求最终会被序列化地处理,但是必须时刻准备着处理多个同时到来的服务请求。 在实际应用中,这些请求总是通过一个事件(如CONNECTOR、READ、WRITE等)来表示的。 在有 序地处理这些服务请求之前,应用程序必须先分离和调度这些同时到达的事件。为 了有效地解决这个问题,我们需要

开发岗面试汇总-爱代码爱编程

中间件: Redis: 高性能k-v数据库,在内存运行,也可以持久化到磁盘,单线程单进程KV数据库。 支持的数据结构和底层实现: 类型用法实现Stringset key value最大512MHash(k-v集合)hmset name key1 val1 key2 val2适合存储对象List(有序列表,按插入顺序排序)lpush/rpush na

i.mx 6ull 驱动开发 十:中断(阻塞处理)_lqonlylove的博客-爱代码爱编程

一、IO 模型 五种网络IO模型_Oh-Why_not的博客-CSDN博客_五种网络io模型 二、Linux 内核等待队列 Linux 内核等待队列_爱洋葱的博客-CSDN博客_内核等待队列 三、Linux 中断基本